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1. A short survey of the development of the theory of heat 
transfer in turbulent flow. Prandtl [ 1 I in 1910 and later in 1928, 

and independently Taylor [ 2 1 in 1916, proposed a n two-layer” - lsminar 
sub-layer and turbulent core - theory of heat transfer for Prandtl 

numbers different from unity, when the Reynolds analogy in its classical 

form becomes inapplicable. The application of this theory proved to be 

limited to a narrow range of Prandtl nunbers in the neighborhood of 

unity. 

To Karman E 3,4 1 belongs the credit of giving in 19%39 the first 

theory of turbulent heat exchange which takes into account the inter- 

action of the molecular and molar processes in the fluid. The range of 

Prandtl numbers for which the theory gave agreement with experimental 

results was noticeably increased. Rejecting the “tm3-layer” scheme Karman 

placed (Fig. 1) between the laminar sub-layer 1 and the turbulent core 2 

a new flow, a transition region, or, as it is often called, a buffer 

region 3, representing in this manner more than half of the old lsminar 
sub-layer and part of the turbulent core. In terms of universal variables 

(1.4) 

where r is the shearing stress on a rigid wall, u is the lo~tudinal 

velocit;, y is the coordinate normal to the surface, andu andp are 

respectively the kinematic viscosity and the density of the fluid; this 
transition layer appears for 5 < q g 30. ‘Ihe distribution of velocities 

of the flow is determined by the system of equations 

Lp=II for O<qf5 

'p = 11.5 log 5 + 5 for 5<q :<30 

rp = 5.75 log T) + 5.5 for 304q 

11.2) 

950 
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For the distribution of heat output from the wall, Karman introduced 

the Stanton number 

Nm 
Sm=nnzP== 

qw -_.__ 
PUn,C,Qn, 

Nm=$, Umd 
11, = - (1.3) 

m L, 

expressing in a most convenient fashion the simple non-dimensional 

numbers of Nusselt IV,, Reynolds RI and Prandtl P. 

Here qIo is the rate of heat flux passing through the surface of the 

body, UB is the velocity of the unperturbed flow distant from the surface 

of the body, 8, is the difference between the temperature of the surface 

and that of the unperturbed flow, p and X are, respectively, dynamic 

coefficients of viscosity and heat conductivity and cp is the specific 

heat. E+ means of simple computations Karman determined the formulas 

1 272L> __ 
S Cf = pci”- 

g (i;= 5 {(P - 1) + 2.3 log [i -j- $ (P - 1) ]} 

An analogous computation carried out 

Prandtl-Taylor muld give the following 

g(P) = 8.7 (P 

for the two-layer theory of 

expression for the function 

- 1) 

(1.4) 

g(P): 

(1.5) 

Comparing the results of the computations (Fig. 2) from Formulas (1.4) 

and (1.5) with experimental material of Eagle and Ferguson [ 5 1, Karman 

showed the advantage of his theory. Whereas the foxmula of Prandtl-Taylor 

(curve numbered 1) gave indication for P = 2 of deviating from the experi- 
mental results of Eagle and Ferguson for indicated values of the number 

R, Karman's formula (l.4) ( curve 2) showed applicability up to P = 15. 
Karman himself observed the increasing divergence of his theory with the 

experimental curve of Ditus and belter [6 I, beginning with P = 15. 'Ihe 
next development in the theory and in the experiments showed that the 

reason for this divergence appeared to be a deficiency in KaITnan's 

theory- not taking into account the influence of turbulent pulsations 

in the neighborhood of the walls. 'Ihe presence of such pulsations and 

their connection with the transfer of heat were confirmed in the experi- 

ments considered in the work of Del-Nunzio [7 I, going back to 1930-31. 

'Ihe experiments of hichardt, Mutchfelder and Reichardt and Shuch 18 I 

show the influence of the pulsations on the profile of the mean velocity 

near the surface of the body. 'Ihis influence leads to a small but calcul- 

ably noticeable deviation in the velocity curve from the purely laminar 

case, represented first by (1.2) (we see this again in Fig. 4). Analogous 

results were obtained in the later experiments of Laufer, Schubauer and 

Klebanoff [9 1. Here in the Soviet Union Kapitsa, Landau and Levich I101 
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Fig. 1. Fig. 2. 

turned their attention to this situation. Levich put it into the scheme 

of his theory of heat-mass exchange. 

The law of the decrease of turbulent shearing stress on approaching 
the wall, 

du 
T1 = - p&7 = pc dy (1.6) 

a question of great importance in the theory of turbulent heat-mass ex- 

change, has been considered by a number of authors. Reichardt [ 11 I , 
starting out from a consideration of the order of decrease of the puls- 

ations (u’ = y, u’ = y21, but not taking into account the influence of 
the correlation coefficient between them, arrived at the cubic law 
f = y3; this law was employed in the investigation of Lin, Moulton and 
Putnam [ 12 I. 

In 1943, Levich [ 10 ] , b y considering the rate of decrease of the 
velocity pulsations, and also by using a supplementary hypothesis on the 
independence of the period of the pulsations from the distance from the 

wall, C~JW to the conclusion that the coefficient of turbulent displace- 

ment, 6, must decrease as one spproaches the wall as the fourth power of 

the distance from the wall. As can be seen from the formula < 1.61, one 

cannot immediately deduce the rate of decrease of c because the velocity 

pulsations are .correlated, and the value of the correlation coefficient 
is rather difficult to determine. An argument given by Elrod C 13 I, who 
determined that the power in the law of the decrease of turbulent visco- 

sity cannot be less than four, proved to be erroneous. lkissler dis- 

covered the law of the fourth power [ 14 1. On the basis of a collection 

of wide-ranging experimental material on heat-mass transfer and also 

some partly empirical considerations he derived the formula 
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E 
- = n’q’, 
V 

n = 0,124 (1.7) 

The question of heat transfer for very small values of the Prandtl 

number is taken up in the work of Martinelli [IS I and Lyon [16 1. A 

systematic presentation of the results in this area can be found in a 

monograph of Kutateladze, Borizhanskii, Novikov and Fed'inskii 1.17 1. 

2. A generalization of the hypothesis of localness for the 
case of interaction between molar and molecular exchange. 

'Ihe hypothesis of localness of turbulent mixing, based on the semi- 
empirical theory of Prandtl-Karman, which disregards the influence of 

the molecular viscosity on the molar transfer of momentum, can be success- 

fully applied also in the case when molecular and molar processes quanti- 

tatively compare with one another and when it is no longer allowable to 

disregard their interaction. 

In the work of the author 118 1 this interaction was taken into 

account. With the idea in mind of producing a semi-empirical theory of 

turbulence the concept of a local Reynolds number was introduced. 'Ihat 

number was at that time defined as the ratio of the kinematic coefficient 

of turbulent mixing to the kinematic viscosity, that is the ratio E/V 

where, as one could deduce from the content, 6 is understood to be the 

turbulent mixing coefficient which does not depend explicitly on the 

magnitude of the molecular viscosity coefficient; it is characterized by 

the usual formulas of the semi-empirical theory of Prandtl and Karman. 

The role of the characteristic length in the local Reynolds number is 

the nmixing lengthn 1, and the characteristic velocity U is the magnitude 

of the relative velocity between adjacent layers of the mean turbulent 

motion U= Z(du/dy). Th is leads to the following quantitative definition 

of the local Reynolds 

In the same paper, 

number is 

number: 

R _ *' _ la " 
V V dy 

(2.1) 

it was proved that the local analog of the Euler 

E+= z 
Q12 (du / dy)" (2.2) 

where 7, the actual turbulent shear stress, containing in itself both 

the molecular and the molar exchange of momentum, must be a function of 

the local Reynolds number 

z .7= p(iLL) 
(>L2 (du / dy)- 

(2.3) 

Attempts to define the form of the function F were at the time not 
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successful. In 119 1 the relationship in Equation (2.3) was written in 

the form 

~=P$f(R), f (R) = RF (4 (2.4) 

In this case R was understood as the expression (2.1) and, more im- 

portant from the point of view of the hypothesis of localness, the ex- 

pression 

(2.5) 

The foxmof dependence of f(R) in that paper cane from purely intui- 

tional considerations, taking the form of a segnentof an equilateral 

hyperbola outside the laminar sub-layer and a sepent of a strai&t line 

to the axis of R in the sub-layer itself. 

Considering the case of turbulent motion which is established parallel 

to an infinite, smooth, plane wall, we obtain 

I= xy, '=~~(I-/-~)=~~~j(R)=const=~~ (2.6) 

'lhus we shall have 

1 = +R), dv R = x2y2 - 
drl 

Near to the snooth wall where $= 7, according to (2.7) and the 

fonula of Deissler (L7), we get 

f (R)G 1 --t_ n4q4 A 1 -I_- a&" 
<a=[:]"> 

(2.8) 

For K = 0.4 and R = 0.124 we have a = 0.0092. 

Far from the wall it is possible to assume that the usual molecular 

viscosity does not 

correct asymptotic 

influence the molar turbulent processes, so that the 

(for large R) relation 

f CR> ---R-/-1 (2.9) 

superposition of the molecular and molar friction. expresses a simple 

The establishment in this fashion of the asymptotic expressions (2.8) 

and (2.9), which correspond to small and large R, can be taken as the 

basis of the approximate semi-empirical definition of the characteristic 

function of the interaction of the molecular and molar mixing f(R) for 

the whole range of R from 0 to -. Accordingly we observe that the func- 

tion F(R) introduced above must take the following form for small and 
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large values of the local Reynolds number by its definition (2.3) and 
because of the established equalities (2.8) and (2.9): 

F (R)r+ +aR, F (R) -1+f (2.10) 

We start from the quantitative analogy between the local Reynolds 
number dependence of the quantity F, which represents the local Euler 
number, according to (2.3) and the dependence of the coefficient of 
resistance of a smooth tube on the Reynolds nunber of the main flow. 
‘lhus it follows from (2.10) that the function 

FI (R) = F (R) - -+ (2.11) 

will be together with all of its derivatives a bounded, continuous, 
smooth and monotonic function of R in the interval 0 < R < =. We note 
that since as R + 8 the function F,(R) tends to a limiting value equal to 
unity, it is possible to assume for large R 

dF1 __ = k (I- F,)’ 
dR 

(2.12) 

where k and F are as yet undetermined positive numbers. 

Collecting the successive derivatives with respect to R from both 
sides of Equation (2.12) and using the boundary conditions imposed on the 
derivatives we realize that the relation F > 1 must hold. 

Integration of Equation (2.12) gives 

-_ 
Fr=l - [C+k(r--)R] r’l (2.13) 

If it is required that the function F,(R) satisfy both of the limit- 
ing conditions (2.10 ), then the arbitrary constants C and k must be 
given by 

c =I, k--a (2.14) 

and so 

and also 

-- 
FI (R) = 1 - [i + ct (1. - 1) R] ,‘I (2.15) 

-_ 
F(R)=l+&[l-(-a(F-l)R] r’l (2.16) 

And so in agreement with Formula (2.4) we obtain the following ex- 
pression for the desired characteristic function of the interaction: 

l(R)=l-;R{l-[I-I-a(r-l)R,+) (2.15) 
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lhe constant R in this case remains undetermined. 

Using (2.17), we construct an asymptotic expansion for f(R) (for 

large R) 
2-r 

f(R)-~+l-[[cc(r-l)] % ).--l (2.18) 

We recall that the previously assumed condition (2.9) of the independ- 

ence of the molecular and molar processes of mixing on distance from the 

solid boundary gave as the leading members of the expansion the first 

two terms. We conclude from this that the third member of the expansion 

must contain R to a negative power, so that if we also take into con- 

sideration the previously mentioned inequality r > 1, we find 

l<r<2 (2.19) 

Returning now to relation (2.17) and inserting into it r - 1 = l/s, 

requiring l< s < m, we obtain finally the required function of the 

interaction 

f (R) = 1 + Ii [I -(I t-q.*] (2.20) 

According to contemporary theories of turbulent mixing there is no 

basis for the rational determination of the constant s. However, for the 

determination of the quantity a it was necessary to employ experimental 
materials for heat-mass transfer for very large values of the Prandtl 

number or the Schmidt number. Analogously it is correct also to deter- 

mine s in this manner. It is necessary to compare the solution with ex- 

perimental material for very small values of the Prandtl or the Schmidt 

number. 

We notice that the right-hand side of (2.X)) depends weakly on s. For 

the smallest integer s = 2, we have 

(2.21) 

and with s = 00 we obtain the exponential law 

f (RR) = 1 +R (1 - e--aR) (2.22) 

lhe full curves of Fig. 3 represent two forms of the function f(R), 
Curve 1 corresponding to Formula (2.21) and Curve 2 to (2.22). As can be 
seen, they differ slightly from each other. On the sane figure the 

dotted curves 3 and 4 correspond to Formulas (2.8) and (2.9), expressing 

the behavior of the characteristic function for very small and very large 

values of R. 
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3. Extension of the Karman theory to other values of the 
Prandtl number. We will retain the general scheme of Kammn in parti- 

tioning the flow into three layers, with the principal difference that 

in the zone of the laninar sub-layer (0 Q q 4 ?a) we take into consider- 

ation the existence of the turbulent oscillations. Correspondingly, we 

take f(R) = 1 in Equation (2.8). In the intermediate region qlo < 3 < ql, 

following Karman, we give the distribution of velocities as a semi- 

logarithmic line, joining it smoothly with the new velocity profile in 

Fig. 3. 

the lminar sub-layer. In the turbulent core we use the usual logarithmic 

velocity law in the established turbulent motion along the smooth wall. 

'lhis simplified scheme does not require knowledge of the behavior of the 

function f(R) for large R and besides, it is possible to obtain a solu- 

tion in closed form. 

Assuming a flow of fluid in thenal equilibrium, we set 

or in universal coordinates 

where we set 

$=& 8, z-5?- 
PC,% 

(3.1) 

(3.2) 

(3.3) 
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‘Ihe system of equations (2.7) and (3.2) allows us to obtain the 

following parametric solution with the quantity R as parameter: 

1 R Rf' (RI + f (JO dR 

‘p=z ~ s o vw”(m ’ 
R 

‘II, ‘1 
Rf’ W + f (RI 

yi = -f- 1/Rf (R) (3.4) 

=2x 
dR 

G[~-l+f(R)--lll/Rf(N ’ 

We use for snall R instead of f(R) the expression (2.8) and we intro- 
duce a change of variables 

aR2 = t4 (3.5) 

lhe system of equations (3.4) leads to the following: 

t 

t+j 
1 + a4 

o (1 + tp 
& 

’ 

+ = +- j(p-l+*t;;;+ t4pdt~ 
q = G-q1 + t4p 

(3.6) 

For the calculation of the integrals we use an expansion of the ex- 

pressions in the integrand in a power series convergent for t < 1. For 

this case, the second integral of the system (3.61, besides the algebraic 

part, will also contain a transcendental part B(P1’4t) where the symbol 

B stands for the function 

B(x)=i&=- 
1 In 1+z~Z+z2 

4Jf/2 1-ccri?+ x2 (3.7) 

0 

t sbul ated by Bakhmet’ ev [ 20 1. 

With this form, for t < 1 and n = 0.124 we will have 

cp = 8.06 (t + 0.3~~ - 0.291P + 0.264t’s - . . .) 

q = 8.06 l(‘3.5~ - 0.225~~ + 0.09tg - . . .) -t 

+ + (1.125t - 0.1625t5)+ ‘+ + (I- F- T) I% (P%)] (3.8) 

q = 8.06~ (1 + t4)li2 = 8.06 (1 -}- 0.5t” - 0.125~~ f- . . .) 

Using this result for the region (0 Q q < q o, 0 < t g t,) we determine 

the values t,, and q o from the condition that the tangent to the velocity 
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profile (3.8) at the pointy = q. 

log 4) goes through the point fql 

rithmic line 
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in the semi-logarithmic scale (#, 

= 30, 4, = 13.63) on the semi-loga- 

qJ = 5.75log q + 5.X (3.9) 

This corresponds to the velocity distribution of Nikuradse in this 

region, at a distance from the solid surface, Siqle calculations indicate 

that for this to be true it is necessary to take t0 = 0.68, q. = 6.07. 

'Ihe equation for this tangent will be 

Cp = 11.3log q - 3.09 

6.07 <q < 30 (3.10) 

Finally, for q 2 30 the velocity profile will become the semi-loga- 

rithmic line (3.9). 'Ihe proposed velocity profile is shown in Fig. 4. 

Fig. 4. 

For this choice of approximate velocity profiles there correspond 

simple analytical expressions for the temperature profiles, consisting of 

the second relation of the system (3.8) for 0 < t < to, 0 < 9 <q,, and 

the following equality for 772 6.07: 

(3.11) 

cj= 11.3log(q+4.98--~)- ~~.3log~~~.05-'~)~~~ (6.07<(?<30) 

ql -;11 5.75 log ?J - 8.49 +$I (30 G 7) 
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Here by $ 

P 

we will understand z$ calculated according to the second 
equation of 3.8) for t = t0 = 0.68, and for $G1 the value of X/J calculated 
for the first equation of the system (3.11) for 77 = v1 = 30. We exhibit 

the expressions for these quantities: 

After this it is not difficult to find a new expression for the Karman 

function g(P), &ich is required for the definition (1.4) of the Stanton 

number Sa, Taking, as before, the index m as the designation for values 
on the axis of the flow, we have from (1.3) and (3.3) 

For this, according to (3.91, and the last equation of the system 

(3.11) it is possible to set 

I$,,, -= 5.75 log I$, -- 8.49 -t +I = ‘p,, - 13.73 + $1 

Besides this, we have 

%, %o 
Cf==pU,z 

From this follows 

(3.15) 

fearing expression (3.15) with (1.4) and using (3.131, we get a new 

expression for the Kannan function 

~(P)~~~-13.73~11.31o~(25.0!)~~--~~-_11.3~og(1.16+*~~- 
(3.16) 

- 0.27 + ?I?$! _f_ ?.I?$ _;_ (&-J6 __ y _ T ‘p) P” ~(0.68 P”*) 

correct for all values of Prandtl number PZ 1. 

Constructing the Nusselt number N,, 
tenperature the temperature di f ferenee 

axis of the flow and assuming 

containing as characteristic 
between the solid wall and the 
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we obtain 

A-, = S,R,P = 0.04Rmai’ FL__ 
1+ 0.2R,‘;eg(P) 

(3.17) 

So, for example, for R, = lo4 and Prandtl nunber P = 100, from (3.17) 

we find Ns = 212. The calculation from an empirical formula of Ditus and 

Belter I6 3 

‘N, = 0.025&?,,0~* PO.= 

gives N, = 200. ‘Ihe difference undoubtedly lies within the limits of ermr 

of the formula of Ditus and Eoelter. 

From Equation (3. lh) comes the following asymptotic (for large P) ex- 

pression of the function g(P): 

g (P) H 8.97p”ja -t_ 6.26 - % -/- 0 (P-l) (3.18) 

For practical calculations it is gen+ly acceptable to make use of 

mean values: velocity u and temperature 8. 

We observe that 

Therefore, changing to the characteristic mean values, we will have 

(3.20) 

For larger values of the number P it is possible to take $m = 6, and 

also, from the known empirical relationship of Nikuradse 

Using these approximate relations and the asymptotic expansion (3.18), 
we get from (3.20) the following asymptotic relation for the Stanton 

number: 
(3.22) 
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Figure 5 exhibits an empirical curve from Deissler's paper quoted 

above; it shows the dependence of the heat S, and consequently the Stanton 

diffusion number S,, on the Prandtl nunber P and the Scbnidt number SC, 
for flow nunber R = 104. 'lhe full line expresses the limiting law of 
Deissler, which agrees with the first member of the asymptotic expansion 

(3.22); the first three members of the expansion give exact agreement 

with the calculated results. We have good agreement with the experiment 

in a broad range of Prandtl numbers even for P < 10. 

In the preceding there remains untouched the problem of the value of 

the ratio of the coefficient of turbulent mixing of the heat content and 

the momentum. From the experiment of Ludwig 1211, this ratio increases 

fntm the walls to the axis of the tube, and according to the experiments 

of Sleicher E22 1, on the contrary, it decreases. Ihe contradictory 

experimental results have led us to take the value unity for this ratio. 

'lhe investigation of the heat transfer for small values of the Prandtl 

number has certain computational complications in the calculation of the 

mean tqerature. Besides, apparently,there is a lack of adequate accurate 

experimental material for very snail values of the Prandtl number vbich 

are necessary to establish the value s for the formula (2.20). 

'lhe preceding considerations related to the heat transfer for turbu- 

lent motion have validity also for the phenomenon of mass transfer. lhe 

difference is only that the Stanton and ksselt numbers have to be re- 

placed by their diffusion analogs and the Prandtl number by the Schmidt 

number. 
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